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Abstract

We develop a novel exploratory tool for non-Euclidean object data based on data depth, extending 

celebrated Tukey’s depth for Euclidean data. The proposed metric halfspace depth, applicable 

to data objects in a general metric space, assigns to data points depth values that characterize 

the centrality of these points with respect to the distribution and provides an interpretable 

center-outward ranking. Desirable theoretical properties that generalize standard depth properties 

postulated for Euclidean data are established for the metric halfspace depth. The depth median, 

defined as the deepest point, is shown to have high robustness as a location descriptor both in 

theory and in simulation. We propose an efficient algorithm to approximate the metric halfspace 

depth and illustrate its ability to adapt to the intrinsic data geometry. The metric halfspace 

depth was applied to an Alzheimer’s disease study, revealing group differences in the brain 

connectivity, modeled as covariance matrices, for subjects in different stages of dementia. Based 

on phylogenetic trees of 7 pathogenic parasites, our proposed metric halfspace depth was also used 

to construct a meaningful consensus estimate of the evolutionary history and to identify potential 

outlier trees.
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1 Introduction

1.1 Backgrounds

Complex data objects are increasingly generated across science and rapidly gaining 

relevance. Finite-dimensional non-Euclidean data is an important class of object data 
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(Marron and Alonso, 2014), which models, for example, directions (Mardia and Jupp, 

2009), covariance matrices (Pennec et al., 2006), and trees (Billera et al., 2001). There 

has been extensive development in methods and theory to address the complexity of these 

objects, including location measures (Fréchet, 1948), statistical inference (Bhattacharya and 

Patrangenaru, 2005), and classification (Dai and Müller, 2018). However, exploratory data 

analysis is a crucial paradigm that lacks development for these nonstandard data. As the 

basic data units become more complex and multifaceted, there is an escalated need for an 

agnostic exploratory data analysis. Data exploration before modeling will reveal properties 

of the data distribution and help identify extreme versus typical observations. In this regard, 

a first step is to overcome the absence of a canonical ordering for complex objects and 

propose principled definitions of rank, median, and order statistics.

Data depth has been proven to be a powerful exploratory and data-driven tool that can 

be used to rank observations and reveal features of the underlying data distribution. The 

notion of data depth was originally introduced for multivariate Euclidean data and provides 

a way of measuring how “representative” or “ outlying” an observation is with respect to a 

probability distribution. In particular, a depth function assigns a non-negative depth value 

to a given observation within a distribution, where the larger this value is the more central/

deep the observation is within the distribution. Points with low depth values correspond 

to observations near the outskirt of the distribution and “far” from the center. These 

observations could be potential outliers worthwhile of investigation. Hence, a notion of 

depth provides a “center-outward” ordering for a sample of multivariate observations and 

allows generalization of ranks, order statistics, central regions (see Zuo and Serfling, 2000), 

and robust inferential and classification methods to multivariate data (Li et al., 2012).

For multivariate Euclidean data, Tukey’s halfspace depth (Tukey, 1975) has attracted much 

attention. Due to its intuitive properties (Zuo and Serfling, 2000) and the robustness of depth 

induced median (Donoho and Gasko, 1992), Tukey’ s depth stands out as the first and one 

of the most popular among a rich body of depth notions proposed for multivariate data (e.g., 

Oja, 1983; Liu, 1990; Einmahl et al., 2015). It not only leads to an intuitive center-outward 

ranking for multivariate data, but also enables the development of graphical data summaries 

(Tukey, 1975; Rousseeuw et al., 1999) and robust nonparametric rank tests (Liu and Singh, 

1993; Chenouri and Small, 2012). However, Tukey’s depth relies on the Euclidean geometry 

and is inappropriate for non-Euclidean data objects.

Though defining depth notions for non-Euclidean data has garnered wide interest, the 

literature has focused on specialized spaces, such as a unit sphere (Small, 1987; Liu and 

Singh, 1992; Pandolfo et al., 2018), positive definite matrices (Fletcher et al., 2011; Chau 

et al., 2019), networks (Fraiman et al., 2017), data on a graph (Small, 1997), and infinite-

dimensional functional data (Fraiman and Muniz, 2001; López-Pintado and Romo, 2009). 

Chen et al. (2018) and Paindaveine and Van Bever (2018) considered halfspace depth for the 

scatter matrix of Euclidean data points. Fraiman et al. (2019) proposed a spherical depth that 

applies to Riemannian manifold data. Targeting general settings, Carrizosa (1996) sketched 

a halfspace depth based on dissimilarity measures without methodological development, 

which differs from our proposal in general; see Section S5 in the Supplemental Materials. 

Carrizosa (1996) also introduced an extension of the halfspace depth to a regression setting 
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closely related to the regression depth proposed by Rousseeuw and Hubert (1999); see also 

Zuo (2021) for a discussion of the theoretical properties of regression depths.

1.2 Our Contributions

The goal of our work is to generalize Tukey’s depth to data objects taking values on an 

arbitrary metric space, defining a general depth notion that shares the desirable properties 

of Tukey’s depth. This will make available depth-based exploratory and robust inferential 

toolsets to general object data.

We propose the metric halfspace depth in Section 2.1, which is a generalization of Tukey’s 

depth to object data on a general metric space. Metric halfspace depth incorporates the 

data space geometry through the distance metric d, a feature available on any metric space. 

The proposed metric halfspace depth, therefore, applies to a wide range of non-Euclidean 

data objects. This includes data lying on smooth Riemannian manifolds such as directional 

data on a sphere (Mardia and Jupp, 2009); bivariate molecular torsion angles on a flat 

torus (Eltzner et al., 2018); and constrained matrix-valued data, such as rotations (Bingham 

et al., 2009) and covariance matrices (Dai et al., 2020). Nonsmooth objects with possible 

degeneracy lying on a geodesic space, such as phylogenetic trees (Feragen and Nye, 2020), 

networks (Kolaczyk et al., 2020), and shapes (Dryden and Mardia, 2016) can also be 

investigated by the proposed depth.

We establish desirable properties of the metric halfspace depth in Section 3, extending 

much of the properties enjoyed by Tukey’s depth (Tukey, 1975) for Euclidean data. The 

axiomatic properties of depth notions introduced in Zuo and Serfling (2000) are satisfied 

to a great extent in many commonly investigated data spaces. The metric halfspace depth 

is invariant to a large class of transformations; if the data are symmetrically distributed 

around a center, then the center has the maximal metric halfspace depth; the depth values 

have a center-outward tendency and monotonically decrease from the deepest point to the 

peripheral points; and the depth vanishes as one moves away from the center. The metric 

halfspace depth function is upper semi-continuous, which implies that the nested deepest 

regions are compact. We establish a root-n rate of convergence of the sample depth to 

the true depth function, and the consistency of the sample deepest point to the population 

deepest point, assuming uniqueness of the latter. Moreover, the metric halfspace depth 

is shown to be robust to contamination, having a high breakdown point for symmetric 

distributions regardless of the dimension of the data space. All proofs are included in the 

Supplemental Materials.

Tukey’s depth for Euclidean data has a well-known weakness in its high computation cost 

even in moderate dimensions. To overcome this obstacle, we propose efficient algorithms 

in Section 4 to approximate the metric halfspace depth by looking into finitely many 

halfspaces as informed by the dataset. Our proposed approximation algorithm for calculating 

the depth function and the deepest point has a complexity of O(n3) with respect to 

the sample size n, independent of the dimension of the data space. The approximation 

algorithm is able to achieve arbitrary precision to the truth by densening the discretization 

of the space, which we establish in our theoretical results and demonstrate in simulation 

studies. The proposed depth is shown to have excellent numerical performance in terms 

Dai et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of efficiency and robustness in Section 5. The approximate depth algorithm respects the 

intrinsic data geometry independent of the ambient space as demonstrated in Section S10 in 

the Supplemental Materials.

We showcase the practical relevance of the metric halfspace depth in two applications 

in Section 6, which include (a) neuro-connectivity matrices from functional magnetic 

resonance imaging (fMRI) data of patients with dementia and healthy controls and (b) 

phylogenetic trees comparing the genetic materials from different species. The application to 

fMRI data discovered differences in the brain connectivity among groups of normal controls 

and patients at different dementia stages progressing to Alzheimer’s disease using depth-

based rank tests. The second application considers estimating the phylogenetic history of 

seven Apicomplexan species, which are pathogenic parasites, in the tree space of Billera et 

al. (2001). We obtained the most representative tree for estimating a consensus evolutionary 

history of the Apicomplexa and also identified outliers in the individual gene trees.

2 Metric Halfspace Depth

2.1 General Definition

We consider extending the concept of data depth to data objects taking values on a general 

metric space. Let ℳ be a metric space equipped with distance d, and X be an ℳ-valued 

random object defined on probability space (Ω, ℱ, P) and measurable with respect to the 

Borel σ-algebra ℬ(ℳ). To define a halfspace depth, the key lies in suitably generalizing the 

notion of halfspaces. For two points x1, x2 ∈ℳ on the metric space, we denote the metric 
halfspace, or halfspace for brevity, as

Hx1x2 = y ∈ ℳ ∣ d y, x1 ≤ d y, x2 , (1)

which is said to be anchored at (x1, x2). Halfspace Hx1x2 contains all points of ℳ that lie 

no further away from x1 than from x2. Let ℋ = Hx1x2 ∣ x1 ≠ x2 ∈ ℳ  be the collection of all 

halfspaces and ℋx = Hx1x2 ∈ ℋ ∣ x ∈ Hx1x2  the set of halfspaces containing x, understanding 

that the same halfspace may arise from different pairs of anchors. The proposed metric 
halfspace depth (MHD) at x ∈ℳ w.r.t. the probability measure PX induced by X is defined as

D(x) = D x; PX = inf
H ∈ ℋx

PX(H) (2)

= inf
x1, x2 ∈ ℳ

d x1, x ≤ d x2, x

P d X, x1 ≤ d X, x2 .
(3)

Depth D(x) is the least probability measure of the halfspaces containing x, which is 

well-defined since the halfspaces are closed and thus measurable. Analogously, given i.i.d. 

observations X1, …, Xn ∈ℳ the sample metric halfspace depth at x ∈ℳ w.r.t. the empirical 

distribution Pn is
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Dn(x) = D x; Pn

= inf
H ∈ ℋx

Pn(H) = inf
x1, x2 ∈ ℳ

d x1, x ≤ d x2, x

n−1 ∑
i = 1

n
I d Xi, x1 ≤ d Xi, x2 , (4)

where I{·} is the indicator function.

It is immediately seen that if ℳ is a Euclidean space, then each halfspace is a closed 

Euclidean halfspace of the form x ∈ ℝm ∣ xTv ≤ c  for some vector v ∈ ℝm and c ∈ ℝ, and 

the metric halfspace depth coincides with Tukey’s halfspace depth (Tukey, 1975). The 

metric halfspace depth specializes to angular Tukey’s depth proposed by Liu and Singh 

(1992) for data lying on a sphere. The metric halfspace depth D(x) captures the geometry of 

a general metric space ℳ through the halfspaces defined by the distance metric d.

The proposed metric halfspace depth measures how central or representative an observation 

is with respect to the distribution. In the context of social choice (Caplin and Nalebuff, 

1988), a point x ∈  is an ideology, i.e., the favorite proposal shared by a group of voters. 

Given two proposals x1 and x2, ideology x prefers the one closer to itself under distance 

d. The halfspace probability PX Hx1x2  is the proportion of votes received by proposal x1 

when posed against x2. Depth value D(x) is the least popularity of a proposal that would 

appeal to x; in other words, x would not favor an unpopular proposal that wins less than 

D(x) proportion of votes. A related interpretation in facility location problems for a different 

depth definition can be found in Carrizosa (1996).

2.2 Preliminaries on Metric Spaces

A map γ from a closed interval I ⊂ ℝ to ℳ is said to be a geodesic if there exists a constant 

λ such that d(γ(t), γ(t′)) = λ |t – t′| for all t t′, ∈I ; if further λ = 1, then γ is said 

to be a unit speed geodesic. We say that a geodesic γ joins x ∈ℳ to y ∈ℳ if I = [0, l], 
γ(0) = x, and γ(l) = y for some constant l. Now, (ℳ, d) is said to be a geodesic space 
if any two points x, y, ∈ℳ are joined by a geodesic. Riemannian manifolds are smooth 

submanifolds embedded in an ambient Euclidean space. The definitions of the manifolds 

and additional geometrical quantities, such as the tangent space Txℳ and exponential map 

expx , are reviewed in Section S1 in the Supplemental Materials. The distance between two 

points x, y on a Riemannian manifold ℳ is the length of the shortest path on ℳ connecting 

them. Riemannian manifolds are geodesic spaces by the Hopf–Rinow theorem (Lee, 2018).

The left panel in Figure 1 illustrates the relationship between different types of complete and 

connected metric spaces and highlights four common examples. The unit sphere S2 in ℝ3 is 

a Riemannian manifold where a geodesic is a segment of a great circle (upper right, Figure 

1), and the 3-spider that models trees with three leaves (lower right, Figure 1) is an example 

of a geodesic space that is not a Riemannian manifold, since the origin is degenerate and 

does not have a neighborhood resembling a real interval.

If ℳ is an unbounded Riemannian manifold such as the space of symmetric positive 

definite matrices and the hyperbolic space, depth notions could alternatively be developed 
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through mapping data on ℳ to a tangent space Txℳ through the inverse exponential map 

expx
−1:ℳ Txℳ, and then employing Euclidean depth notions such as Tukey’s depth on the 

linear tangent space. However, this tangent space approach has limited applicability since it 

relies on the exponential map being injective, which is violated on bounded spaces such as 

the unit sphere Sk and the rotational group SO(k); even if this approach can be applied, it is 

in general not possible to fully preserve the data geometry reflected by the distance metric 

while working on the linear tangent space Txℳ; and the base point x must be chosen. In 

contrast, our metric halfspace depth is well-defined and geometry preserving on any metric 

space.

2.3 Examples: Metric Halfspace Depth in Common Spaces

In what follows, we provide examples of commonly investigated data spaces and illustrate 

metric halfspace depth in these spaces. Example 1–Example 3 concern Riemannian 

manifolds, and 4 considers the tree space as a geodesic space that is not a Riemannian 

manifold. Depth values in the examples are calculated using the approximation algorithm 

described in Section 4.1. More details about the setups can be found in Section S3.3.

Example 1 (Euclidean space). When data lie in the Euclidean space ℳ = ℝm, the proposed 

metric halfspace depth coincides with Tukey’s depth. With norm ‖x‖ = (x⊤x)1/2 , distance 

d(x1, − x2) = ‖x1 − x2‖, and Euclidean halfspace Hx0, v
′ = y ∈ ℝm ∣ y − x0

⊤v ≤ 0 , classical 

Tukey’s depth is,

DTukey (x) = inf PX H′ , x ∈ ℝm, (5)

where the infimum is taken over all Euclidean halfspaces H′ containing 

x. Any metric halfspace H = Hx1x2 ∈ ℋ coincides with a Euclidean halfspace 

Hx0, v
′ = y ∈ ℝm ∣ y − x0

⊤v ≤ 0  with x0 = (x1 + x2) / 2 and v = (x2 − x1) / ‖x2 − x1‖ if x1 ≠ 

x2 ; vice versa, each Euclidean halfspace can be expressed as a metric halfspace. Thus, the 

metric halfspace depth coincides with Tukey’s depth because the infimums are taken over an 

identical set, noting that PX Hx1x2 = 1 if x1 = x2 which does not influence the infimum for the 

metric halfspace depth.

Tukey’s depth in the Euclidean space satisfies all four axiomatic properties of a depth 

function introduced in Zuo and Serfling (2000), is a continuous function of the depth 

location (Massé, 2004) and can be consistently estimated by its sample version (Massé, 

2004); moreover, the deepest point, i.e. Tukey’s median, has a high breakdown point 

(Donoho and Gasko, 1992; Liu et al., 2017) and can also be consistently estimated (Bai and 

He, 1999; Chen et al., 2018; Zuo, 2020). We will show in 3 that many of these properties 

generalize on geodesic spaces.

Example 2 (Spheres). The m-dimensional unit sphere Sm = x ∈ ℝm + 1 ∣ x⊤x = 1 ⊂ ℝm + 1

is a Riemannian manifold. The distance between x, y ∈ Sm is the great arc distance d(x, y) = 

arccos(xT y). The metric halfspace depth specializes to angular Tukey’s depth for spherical 

data considered by Small (1987); Liu and Singh (1992), where the latter is defined as the 
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least probability measure of any hemisphere covering x. This is because a metric halfspace 

Hx1x2 = x ∈ Sm ∣ x⊤ x2 − x1 ≤ 0  is a closed hemisphere in this context.

An example of the metric halfspace depth applied to data on S2 is shown in the upper left 

panel of Figure 2, where data were generated according to the wrapped normal distribution 

with isotropic variance 1/2; the setup is described in Section S3.3. The depth values 

follow a center-outward pattern, monotonically decreasing from the deepest point near the 

center of symmetry. The deepest point meaningfully characterizes a representative point 

well-encompassed by the point cloud, and the points with the lowest depth all lie on the 

peripheral.

Example 3 (Symmetric positive definite matrices). Let ℳ = SPD(k) be the manifold of k × k 
symmetric positive definite (SPD) matrices. This matrix manifold has seen wide application 

in modeling brain connectivity matrices (Dai et al., 2020) and diffusion tensors (Pennec et 

al., 2006). Endowed with the affine-invariant geometry (Pennec et al., 2006), the geodesic 

distance on ℳ is defined as d(P, Q) = ‖logm(P−1/2QP−1/2)‖F for P, Q ∈ℳ, where ‖·‖F is the 

Frobenius norm, logm is the matrix logarithm, and P−1/2 is the inverse of the symmetric 

positive definite square root P1/2 of P. The geometry is invariant under affine transformations 

in the sense that d(APA⊤, AQA⊤) = d (P, Q) for any invertible matrix A and thus have 

been widely adopted in applications. As the data space is non-Euclidean with a complex 

geometry, the halfspaces in general have rather complex shapes. An example of a halfspace 

Hx1x2 is shown in Figure S2. Here we evaluate the depth of an SPD matrix with respect to 

a sample of SPD matrices as the data units, which is different from the scenario considered 

for scatter depth (Chen et al., 2018; Paindaveine and Van Bever, 2018) where the depth of 

an SPD matrix is evaluated with respect to Euclidean data units for estimating the covariance 

matrix.

Illustrated for ℳ = SPD(2), the lower panel of Figure 2 displays non-isotropic log-normal 

matrix data points that are colored according to the proposed metric halfspace depth. Each 

point represents the lower diagonal values of an SPD matrix (x y; y z). The proposed depth 

produces reasonable results by showing a center-outward profile analogous to Tukey’s depth 

in the Euclidean space. The deepest point in red is tightly surrounded by data points with 

gradually decreasing depth values, and the deepest point is not heavily drawn by data points 

with large values in the diagonal elements x and z. The peripheral points all have the least 

depth.

Example 4 (BHV space of phylogenetic trees). We model phylogenetic trees in the Billera–

Holmes–Vogtmann (BHV) tree space (Billera et al., 2001), a widely investigated geodesic 

space with nice geometry. Let ℳ = Tk denote the space of rooted phylogenetic trees with k 
leaves endowed with the BHV geometry (Billera et al., 2001), where a brief summary for the 

BHV geometry and the associated metric halfspaces is included in Section S2.4.

We illustrate here the geometry of the simplest tree space T3 with three leaves and one 

interior edges. The topology of the tree is the way leaves and interior nodes are connected. 

There are three bifurcating tree topologies respectively corresponding to which of leaf A, 
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B, and C branches out first, and a star tree topology with a degenerate interior edge. Tree 

space T3 is represented by the 3-spider ℝ ≥ 0 × 1, 2, 3 / , formed by three rays identified at 

the origin o. Coordinate (a, j) represents a point (tree) lying on the jth leg of the 3-spider 

at a distance a from the origin; we refer to this representation of the trees as the (radius, 

branch)-coordinate. The equivalence relationship ~ is defined by (a1, j1,) ~ (a2, j2) if and 

only if (a1, j1) = (a2, j2) for a1 > 0 and for a1 = a2 = 0. The three legs of the spider correspond 

to three different bifurcating tree topologies, and the position of a point on a leg corresponds 

to the length of the interior edge, as illustrated in Figure 2. The geodesic between two points 

on the same branch is the line segment connecting them; analogously, the geodesic between 

two points on different branches consists of the line segments connecting each to the origin. 

Thus, the distance between two points x, y on the 3-spider is the Euclidean distance if they 

are on the same branch, and d(x, o) + d (o, y) if they are on different branches (see lower 

right panel, Figure 1).

An illustration of the metric halfspace depth for trees with three leaves on T3 is shown in 

Figure 2. The trees were generated according to a normal distribution centered at a tree with 

leaf B branched out first (on the axis pointing to 8 o’clock). The proposed metric halfspace 

depth assigned the largest value for trees around the center, and the depth values gradually 

and monotonically decreased as data moved away from the center. The depths of the most 

peripheral trees on each axis received the lowest depths. A small number of trees had either 

leaf A or C branching out first, and these trees were all assigned low depths.

3 Theoretical Properties

3.1 Desirable Depth Properties

For a data depth notion to quantify reasonably how representative data points are within 

a distribution or sample, and define a center-outward ordering, Zuo and Serfling (2000) 

postulated four properties that the depth function should satisfy when analyzing data in a 

Euclidean space, namely (a) Affine invariance, i.e. the depth of a point is invariant to affine 

transformations; (b) Vanishing at infinity, namely the depth should approach 0 as one moves 

away from the center of the data; (c) Maximality at the symmetric center, namely if there is 

a “center”, such as a point of symmetry, in the data, then the depth achieves its maximum at 

this center; and (d) Center-outward monotonicity, i.e. depth values gradually decrease as one 

moves away from the deepest point. These properties are satisfied by classical Tukey’s depth 

(Tukey, 1975).

We will show that the four depth properties are satisfied to a great extent by the proposed 

metric halfspace depth under regularity conditions as detailed in the next theorem. To state 

these properties on a general metric space, due to the lack of a vector space structure, we 

need to address the lack of affine data transformation and introduce an invariance property, a 

notion of data symmetry, and monotonicity.

For an invariance property, let f be a transformation from (ℳ, d) to another metric space ( , 

e). For any y ∈ , let ℋy, e = Hy1y2, e ∣ y ∈ Hy1y2, e, y1, y2 ∈ N  be the collection of halfspaces 

Hy1y2, e = z ∈ N ∣ e z, y1 ≤ e z, y2 ⊂ N, containing y. We say that f is halfspace preserving 
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at x ∈ℳ with respect to (ℳ, d) and ( , e), or simply halfspace preserving at x if ℋf (x),e 

= f (ℋx ) ≔ {f (H) | H ∈ℋx}, in which case the collection of halfspaces containing x is 

preserved by f. We say that X is halfspace symmetric about θ ∈ℳ if P (X ∈H) ≥ 1/2 for 

all halfspace H containing θ, extending the same notion defined in the Euclidean space by 

Zuo and Serfling (2000). To define monotonicity on a metric space, we restrict attention 

to geodesic spaces, where monotonicity of the depth function can be investigated along 

geodesics leaving from the deepest point.

For theory development, we require (ℳ, d) to be a connected complete separable metric 

space. For a subset S ⊂ ℳ, let S°, S, ∂S , and Sc denote the interior, closure, boundary, 

and complement of S, respectively. Proofs for the theoretical results and additional analytical 

properties of the halfspaces are included in Section S7 and Section S2.5, respectively.

Theorem 1. The metric halfspace depth D(·) satisfies the following properties.

a. (Transformation invariance) Let f : ℳ →  be a bijective measurable map 
between metric spaces (ℳ, d) and ( , e) and Df(y) = inf

H′ ∈ ℋy, e

Pf(X) H′  denote the 

depth at y ∈  with respect to the pushforward measure Pf(X) = PX° f−1 on . If 
f is halfspace preserving at x ∈ℳ, then D(x) = Df (f (x)).

b. (Vanishing at infinity) Let o ∈ℳ be an arbitrary point. Then sup
x:d(o, x) > L

D(x) 0

as L → ∞, taking the convention here that the supremum over an empty set is 0.

c. (Maximality at the symmetry center) If X is halfspace symmetric about a unique 
center θ, then θ is the unique deepest point, i.e., θ = argmaxx ∈ℳ D(x).

d. (Center-outward monotonicity) Suppose ℳ is a geodesic space. Let θ ∈ℳ be 
a deepest point, x ∈ℳ, and γ:[0, 1] → ℳ a geodesic joining θ to x. If any 
halfspace Hx1x2 of ℳ that has a nonempty intersect with γ([0, 1]) contains at least 

one of x and θ, then D(x) ≤ D(γ (t)) holds for t ∈[0, 1].

Theorem 1(a) states that the metric halfspace depth is invariant to transformation f that 

preserves halfspaces. It is immediate that affine transformations and rotations are halfspace 

preserving, respectively, between Euclidean spaces and between spheres of the same 

dimension at all x ∈ℳ. Thus, this result implies the transformation invariance properties 

of Tukey’s depth (Donoho and Gasko, 1992) and angular Tukey’s depth (Liu and Singh, 

1992). More generally, a map f is halfspace preserving at x if it preserves the order of 

distances at x, i.e., for x, x1, x2, ∈ℳ, d(x1, x) ≤ d(x2, x) if and only if e(f(x1), f(x)) ≤ e (f(x2), 

f (x)). This is clearly satisfied if f is an isometry, i.e., d(x, y) = e(f(x), f(y)) for all x, y ∈ℳ.

The depth follows a center-outward tendency. In a space where “infinite” is well-defined, 

Theorem 1(b) states that the depth of a point vanishes as the point moves towards infinity. 

Therefore, the peripheral data points will have a small depth. Theorem 1(c) states that if the 

data distribution is halfspace symmetric about a unique center θ, then the halfspace depth 

is maximized at this center θ. We consider halfspace symmetry to define data symmetry 

on a general metric space, which does not require the space ℳ itself to be symmetric, 

thereby generalizing beyond the Euclidean space and spheres (Liu and Singh, 1992). In 
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the Euclidean space, Zuo and Serfling (2000) showed that halfspace symmetric is weaker 

than alternative symmetry notions such as centrally symmetric, i.e. X − θ and θ − X equal 

in distribution, and angularly symmetric, which requires (X − θ) / ‖X – θ‖ to be centrally 

symmetric.

Between the deepest θ and an arbitrary location x, Theorem 1(d) states that the metric 

halfspace depth is non-increasing along geodesics leaving from θ if the metric space 

satisfies a geometric condition. The geometric condition requires that the halfspaces in ℳ 
are not overly rich so they will not single out points on the geodesic connecting θ and x 
while excluding the endpoints. This condition is satisfied by the model spaces, namely the 

Euclidean space, sphere, and hyperbolic space, as stated in Proposition 1.

Proposition 1. Let ℳ be one of the m-dimensional model spaces, namely, the Euclidean 

space ℝm, unit sphere Sm, or hyperbolic space ℍm, and γ:[0, 1] → ℳ be a geodesic joining 
θ to x. Then any halfspace H ⊂ ℳ with a nonempty intersect with γ([0, 1]) contains at least 
one of θ and x.

We next show the upper semi-continuity of the depth function D(·) and the compactness and 

nestedness of the depth regions Dα ≔ {x ∈ℳ | D(x) ≥ α}, α > 0. Define PH:ℳ × ℳ ℝ
as PH x1, x2 = PX Hx1x2  and let Ex1x2 = x ∈ ℳ ∣ d x, x1 = d x, x2  be the equidistance set 

anchored at x1, x2 ∈ℳ.

A metric space is locally compact if every point has a compact neighborhood. All finite-

dimensional manifolds and BHV tree spaces are locally compact.

Proposition 2. Suppose that ℳ is a complete and locally compact geodesic space.

a. PH (·,·) is upper-semi continuous. If further PX Ex1x2 = 0 for all x1 ≠ x2 ∈ℳ, then 

PH (·,·) is continuous.

b. D(x) is upper semi-continuous.

c. Dα is nested, i.e. Dα1 ⊂ Dα2 for α1 ≥ α2, and Dα is compact for α > 0.

The additional condition in Proposition 2(a) is satisfied if ℳ is a Riemannian manifold and 

X has a density w.r.t. the Riemannian volume measure (Lee, 2018); for example, this is 

satisfied if ℳ is the unit sphere and X follows a warped normal distribution.

3.2 Convergence of the Depth Function and Deepest Point

Next, we show that the metric halfspace depth can be estimated consistently by its sample 

version uniformly over all locations by making use of empirical process theory. Let L2(Q) 

be the L2-norm of measurable functions with respect to probability measure Q on the 

sigma-algebra of ℳ, so L2(Q)(f) = {∫ f(x)2 dQ(x)1/2 For a set of measurable functions ℱ, 

the covering number N(ϵ, ℱ, L2, (Q)) is the minimal number of balls in L2(Q) with radius ϵ 
required to cover ℱ.

The bracketing number N[](ϵ, ℱ, L2(Q)) is the minimal number of ϵ-brackets required to 

cover ℱ. An ϵ-bracket [l, u] is the set of functions f with l ≤ f ≤ u, given two functions l and 
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u with ∥ u − l ∥L2(Q) < ϵ. The covering and bracket numbers for a collection of measurable 

sets are by convention those of the corresponding collection of indicator functions. Either 

one of the following conditions is needed for the convergence results.

(N1) sup
Q

∫0
∞ log N ϵ, ℋ, L2(Q) 1/2dϵ < ∞, where the supremum is taken over all finite discrete 

probability measures Q and ℋ is the set of metric halfspaces.

(N2) ∫0
∞ log N[] ϵ, ℋ, L2 PX

1/2dϵ < ∞.

Theorem 2. Given i.i.d. observations X1, …, Xn from PX, if either (N1) or (N2) holds,

E sup
x ∈ ℳ

Dn(x) − D(x) = O n−1/2 .

Condition (N1) and (N2) are common entropy/bracketing integral conditions imposed on the 

complexity of the collection of halfspaces in order to guarantee convergence of the empirical 

process. If (N1) holds, then the statement of Theorem 2 is uniform not only in x but also 

over the underlying distribution PX. Condition (N1) holds if the Vapnik–Chervonenkis (VC) 

dimension of ℋ is finite (Theorem 2.6.4, van der Vaart and Wellner, 1996). Let  be a 

collection of subsets of ℳ. We say that  shatters a finite subset F = {x1, …, xn} ⊂ ℳ if 

 ∩ F ≔ {  ∩ F | C ∈ } is the collection of all subsets of F. The Vapnik–Chervonenkis 
(VC) dimension of  is the smallest n for which no set of size n is shattered by , formally 

defined by

VC(C) = inf n ∣ max
x1, …, xn

Δn C, x1, …, xn < 2n ,

where Δn( , x1, …, xn) = {C ∩ {x1, …, xn} | c ∈ } is the number of subsets of {x1, …, 

xn} picked out by . It is well known that the VC dimension of halfspaces in the Euclidean 

space ℝm is m + 2 (Wenocur and Dudley, 1981). Theory on the VC dimensions of subsets 

of a Riemannian manifold (Narayanan and Niyogi, 2009) or of a general metric space has 

been highly limited. That said, since the collection of halfspaces ℋ is indexed by two points 

on the metric space, it may be reasonable to expect VC(ℋ) to be finite if the geometry of 

ℳ is regular enough. We establish the boundedness of VC dimensions for the collections of 

halfspaces on the sphere Sm and the space T3 of phylogenetic trees with 3 leaves.

Proposition 3. The following holds:

a. On an m-dimensional sphere ℳ = Sm, VC(ℋ) ≤ m + 3.

b. On the space of phylogenetic trees ℳ = T3 with 3 leaves, VC(ℋ) = 4.

By Theorem 2, Proposition 3 implies n1/2 -convergence for the empirical metric halfspace 

depth on these spaces.
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A deepest point w.r.t. the sample is a consistent estimator of the population deepest point by 

M-estimation theory.

Proposition 4. Suppose that ℳ is a complete and locally compact geodesic space, D(·) has a 
unique maximum θ = argmaxx ∈ℳ D(x), and the conditions of Theorem 2 hold. Let θn be an 
arbitrary point in the deepest set Sn ≔ argmaxx ∈ℳ Dn(x). Then

d θn, θ 0 a.s.

as n ∞ .

By Theorem 1(a), the deepest set Sn is invariant to halfspace preserving transformations. In 

the asymptotic limit, the deepest set shrinks to the population deepest point if the latter is 

unique, so any sample deepest point is near-invariant.

3.3 Robustness

A depth median is defined as an estimator T(·) that takes a point cloud Ƶ = z1, …, zn  on ℳ 
to a choice of point T(Ƶ) ∈ argmaxx ∈ ℳD x; PƵ  in the deepest set w.r.t. metric halfspace depth, 

where PƵ is the empirical measure placing equal point mass on each point in Ƶ. Given a 

sample, a depth median yields a (unique) point as output, but there exists potentially more 

than one depth medians (as estimators) in general if the deepest set is non-singleton. The 

depth median of a point cloud is interpreted as the most representative point of the data and 

can be used as a location descriptor/estimator. In the Euclidean case, Tukey’ s depth median 

is a generalization of the classical median on the real line. Robustness and asymptotic 

properties were investigated in Donoho and Gasko (1992) and Massé (2004), respectively.

The breakdown property of the metric halfspace median, which is the depth median based 

on our metric halfspace depth, is analyzed next. Intuitively, the breakdown point is the 

smallest fraction of contamination that brings an estimator to infinity. Formally, let  (n) = 

{X1, …, Xn} be a sample of n observations and (l) ={y1, …, yl} be l contamination points. 

The breakdown point ϵ* of a metric halfspace median T(·) in a sample (n) is the smallest 

fraction of contamination to bring the estimate in the contaminated sample arbitrarily far 

away from that of the uncontaminated sample. The finite-sample (additional) breakdown 
point is defined as

ϵ* = ϵ* T; X(n) ≔ min
l

l
n + l sup

Y(l)
d T X(n) , T X(n), Y(l) = ∞ ,

where we set ϵ* = 1 if the set being minimized is empty. The next proposition and 

its corollary analyze the finite-sample and asymptotic behavior of the breakdown point, 

respectively.

Proposition 5. Let ℳ be an arbitrary metric space. For any metric halfspace median T(·), it 
holds that
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ϵ* ≥ Dn θn
1 + Dn θn

,

where θn = T(  (n)) is a deepest point w.r.t. sample  (n).

Corollary 1. If (N1) or (N2) holds, then as n→∞,

ϵ* ≥ D(θ)
1 + D(θ) a.s.,

where θ ∈argmaxx ∈ℳ D(x) is any deepest point w.r.t. the distribution PX of X.

Corollary1 implies that the breakdown point for the metric halfspace median for any 

halfspace symmetric distribution is at least 1/3 regardless of the dimensions, extending the 

results for Tukey’s median in the Euclidean case (Donoho and Gasko, 1992).

4 Efficient Computation

4.1 Approximation Algorithms

In the Euclidean space, exact computation of Tukey’s depth and deepest point are 

prohibitively slow if the dimension is higher than 3 even with efficient algorithms 

(Dyckerhoff and Mozharovskyi, 2016). On a general metric space, the evaluation of 

the metric halfspace depth as an infimum faces additional difficulty and would require 

optimization algorithms that adapt to specific manifolds (Yang, 2007). Moreover, the search 

for the deepest point requires difficult optimization of a discontinuous function Dn(·). This 

motivates us to develop fast approximation algorithms for the metric halfspace depth and 

deepest point.

Let  = {X1, …, Xn}⊂ ℳ be the collection of observations, and also denote  ⊂ ℳ as the 

anchor set containing | |= n  anchor points of halfspaces. We approximate Dn(x) w.r.t. 

by taking the infimum over only halfspaces anchored at points in . The proposed metric 

halfspace depth approximation is

Dn(x) = Dn(x; A) = inf
x1 ≠ x2 ∈ A:d x, x1 ≤ d x, x2

n−1 ∑
i = 1

n
I d Xi, x1 ≤ d Xi, x2 . (6)

The infimum is taken over at most n (n  −1) ordered pairs of anchors. The number 

of anchors controls the tradeoff between computational cost and accuracy, in that using 

a larger number of anchors results in a better approximation but at a higher cost. In 

most applications, the anchor points  can be set to the sample points , and for 

improving approximation, one can enlarge the set of anchor points by including “jiggled” 

versions of these points; more information is included in Section S3.2. The deepest point 

is approximated by the in- and out-of-sample points with the largest approximate depth, 

defined respectively by
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θ = argmax
x ∈ X

Dn(x), θ∘ = argmax
x ∈ ℳ

Dn(x) . (7)

The in-sample deepest point θ can serve as a good initial value in numerical optimization 

procedures to search for the out-of-sample deepest θ∘ , where the latter is a more accurate 

approximation of θ .

Like their population and sample versions, the approximate depth and deepest points 

incorporate the geometry of ℳ through the metric d and thus avoids the choice of a 

parametrization of the metric space or linearization onto the tangent space, both of which 

could be ill-defined. The approximate depth is defined as long as the discrete graph of 

pairwise geodesic distances is given, and thus the proposed depth is applicable to a wide 

range of scenarios where the available data are nodes and edges of a graph (Small, 1997) 

or where the pairwise geodesics are estimated from a point cloud using a graph-based 

method (Tenenbaum et al., 2000). Algorithms for computing depth and the deepest point are 

summarized in Algorithm 1 and Algorithm 2, respectively.
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The complexity of Algorithm 1 is O(n n2 + n3) for evaluating depth at points in  w.r.t. 

sample  and anchor points  = , where n  = | |. The rate of complexity does not have 

an exponent involving dimension m, similar to those of the approximation algorithms (e.g., 

Bogićević and Merkle, 2018; Zuo, 2019, and the references therein) for computing Tukey’s 

depth in the Euclidean space. This contrasts with the exact algorithms (e.g., Dyckerhoff 

and Mozharovskyi, 2016; Zuo, 2019) for computing Tukey’s depth where the complexity is 

typically O(n nm) or O(n nm−1 log(n)). Algorithm 2 takes O(n3) since n  = n.

4.2 Theoretical Properties for the Approximation

We establish that the approximate depth converges to the truth if the anchor points 

are dense enough in ℳ. Halfspace Hz1z2 is said to be a minimizing halfspace at x if 

x ∈ Hz1z2 and PX Hz1z2 = D(x). The following theorem derives the rate of convergence for 

the approximation if a minimizing halfspace exists, and the consistency result otherwise. To 

obtain the rate of convergence, for z j ∈ℳ let Dj = d(X, zj), j = 1, 2 and assume the following 

conditions.

(P1) For some ϵ > 0 and c1 > 0, Dj has a small ball probability near 0 satisfying 

P Dj ≤ t ≥ c1tm0 for j = 1, 2 and t ≤ ϵ.

(P2) For some ϵ > 0 and c2 > 0, P(|D1 – D2| ≤ t) ≤ c2t holds for t ≤ ϵ.

Theorem 3. Suppose that either (N1) or (N2) holds, and the approximation algorithm uses 
the sample points  as the anchor points . Let x be a point on ℳ.

a. If the infimum in D(x) = inf
H ∈ ℋx

PX(H) is achieved by a halfspace Hz1z2, i.e., 

D(x) = PX Hz1z2 , and (P1) and (P2) hold for (z1, z2), then as n → ∞,

Dn(x) − D(x) = Op n−1/m0 .

b. Suppose that the infimum of D(x) = inf
H ∈ ℋx

PX(H) is not achieved by any 

halfspace. If P(d(z, X) < r) > 0 for all z ∈ℳ and r > 0 and PX Ex1x2 = 0 for 

all x1, x2 ∈ℳ, then as n → ∞,

Dn(x) − D(x) = op 1 .
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The idea of proof for Theorem 3 is to approximate the minimizing halfspace probabilities by 

random halfspaces. The halfspace where the infimum is attained does not need to be unique. 

Conditions (P1) and (P2) are requirements on both the distribution of X and on the geometry 

of ℳ. They ensure that if the random anchor points lie close enough to the anchor points 

of a minimizing halfspace, then the halfspace probabilities are close. If ℳ is a Riemannian 

manifold and X has a density bounded away from 0 w.r.t. the Riemannian volume measure, 

then m0 in (P1) is the intrinsic dimension m of ℳ. Thus, the rate of convergence of the 

approximation algorithm given by Theorem 3(a) is as fast as Op(n−1/m) on an m-dimensional 

Riemannian manifold. Conditions (P1) and (P2) hold in a Euclidean space if X has a finite 

first moment and density bounded away from zero and infinity, and (P2) is violated if the 

distribution of d(X, z1) is overly concentrated around d(X, z2). To give details, we describe 

two examples when (P1) and (P2) are satisfied and a counter-example in Section S8, and 

additional properties of the approximate depth in Section S9.

5 Numerical Experiments

We investigate the performance of the metric halfspace median as a robust estimate for 

the center of a distribution. Three Riemannian manifolds were considered for the data 

space ℳ, namely the k × k symmetric positive definite matrices SPD(k) with the affine 

invariant metric; the k-dimensional unit sphere Sk ; and the rotational group SO(k) of k × 

k orthogonal matrices with determinant 1. The intrinsic dimensions m for these manifolds 

equal, respectively, k(k + 1)/2, k, and k(k − 1)/2. The definitions of the tangent spaces and 

their bases, and exponential maps are described in Section S1 and Section S2.

For each metric space ℳ, we considered four cases where i.i.d. data were generated 

according to either an uncontaminated distribution ℙ = ℙ1 for Case 1 or contaminated 

distribution ℙ = 0.9ℙ1 + 0.1ℙ2 for Cases 2 to 4. Under Case 1, independent samples Xi, 

i = 1, …, n were generated according to ℙ = ℙ1, where ℙ1 is the law of random 

variable X = expθ1 V 1; expθ1:Tθ1ℳ ℳ is the exponential map at the center θ1 ∈ℳ of the 

uncontaminated distribution; Tθ1ℳ is the tangent space at θ1; and V1 is a non-isotropic 

normal random variable lying on Tθ1ℳ. Let B1j, j = 1, …, m be an orthonormal basis on 

Tθ1ℳ, and set V 1 = ∑j = 1
m ZjB1j where Zj follows independent N 0, σj

2  with σj / σj+1 = 3 

for j = 1, …, m−1, having a total variance ∑j = 1
m σj

2 = 1. For Cases 2 to 4, i.i.d. data Xi 

were generated under mixture distributions ℙ = 0.9ℙ1 + 0.1ℙ2 with 10% of data coming from 

the contaminating distribution ℙ2 that varied between different cases. In Case 2, ℙ2 was 

set as a location contamination with the same distribution as expθ2V 2, where θ2 = expθ1 U is 

a random location at a unit distance away from θ1, U is sampled (once per Monte Carlo 

repeat) from the uniform distribution on the unit sphere on Tθ1ℳ, V 2 = V 1
′ ≔ ∑j = 1

m Zj
′B2j, 

Zj
′ follows independent N 0, σj

2 , and B2j is an orthonormal basis of Tθ2ℳ, j = 1, …, m; in 

Case 3, ℙ2 was a scale contamination sharing the same distribution as expθ2V 2 where θ1 = 

θ2 and V 2 = S ≔ ∑j = 1
m W jB1j is a zero-mean multivariate normal distribution on Tθ2ℳ, and 

Wj follows independent N 0, sj
2  with variance sj = σm−j+1, j = 1, …, m, differing from that 
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for ℙ1; in Case 4, ℙ2 was a location-and-scale contamination sharing the same distribution as 

expθ2V 2 where θ2 is the same as in Case 2 and V2 is the same as in Case 3.

Our target is to estimate robustly the center θ1 of the uncontaminated distribution ℙ1, with 

the center and random tangent vector varying between simulation cases. The contamination 

distribution ℙ2 was set to a distribution that differed from ℙ1, in the location, scale, and 

location-and-scale for Case 2, 3, and 4, respectively. To summarize, the simulation scenarios 

considered were

• Case 1, uncontaminated distribution centered at θ1,

• Case 2, contaminated distribution with location outliers,

• Case 3, contaminated distribution with scale outliers, and

• Case 4, contaminated distribution with location-and-scale outliers.

For example, on S2, a location outlier is centered around θ2 that lies far away from the 

center θ1 of the uncontaminated distribution ℙ1. A scale outlier is generated from V2 which 

has a different covariance matrix than V1; therefore, a scale outlier may lie away from its 

center in a direction uncommon to the inliers. We varied the sample size n ∈{50,100,200} 

and the manifold parameter k ∈{2,3,4} in each case.

As estimators of the center, we compared the proposed metric halfspace median μMHD = θ∘  as 

defined in (7) and the Fréchet mean μFM. The Fréchet mean (Fréchet, 1948) of the sample Xi, 

i = 1, …, n under distance d is μFM = argminx ∈ ℳn−1∑i = 1
n d2 x, Xi , which is a generalization 

of the classical mean. For calculating the metric halfspace median, 10 jiggled points were 

added to the anchor set around each sample point. We also compared with the Fréchet 

median μFMd = argminx ∈ ℳn−1∑i = 1
n d x, Xi , which coincides with the deepest point w.r.t. the 

geodesic distance depth proposed by Chau et al. (2019) on ℳ = SPD(k). These location 

estimators μ were evaluated according to the median geodesic distance to the true mean 

d(μ, μ) out of 1024 Monte Carlo repeats.

Results for ℳ = SPD(k) displayed in Table 1 show that the proposed metric halfspace 

median performs well in general. In Case 1 without contamination, the Fréchet mean 

was the most efficient overall, especially for smaller sample sizes n = 50 and 100, while 

the metric halfspace median and the Fréchet median are competitive. In the presence 

of contamination, both deepest points μMHD and μFMd dominated μFM and demonstrated 

robustness by producing estimates that were close in performance to those in Case 1 without 

contamination. The proposed metric halfspace median outperformed the Fréchet median in 

the contaminated scenarios. A reason for this is that the Fréchet median only considers 

the sum ∑i = 1
n = d x, Xi  of geodesic distances from the data points to x, disregarding the 

relative locations of the data points within the point clouds and thus having weaker invariant 

properties than the metric halfspace depth. The advantage of μMHD over μFMd becomes more 

significant when the sample size is larger, in which case the approximation of the metric 

halfspace depth through Dn is improved.
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Results for two bounded manifolds are shown in Table 2, where the exponential maps are 

not injective on these manifolds and thus depth concepts cannot be defined in general 

through mapping data onto the tangent space. The metric halfspace median is overall 

superior to the Fréchet mean in the presence of contamination, especially when the intrinsic 

dimension is large. Even in Case 3, where the scale-only outliers do not affect the true 

center, the metric halfspace median was, in many cases, more efficient than the Fréchet 

mean on spheres. This could be due to the low rate of convergence of the sample Fréchet 

mean for data that extends the entire manifold (Eltzner and Huckemann, 2019). On the 

bounded manifolds, the metric halfspace median was overall comparable with the Fréchet 

median, slightly outperforming the latter on Sk in Case 4 when n = 200, and slightly 

under-performing it on SO(k). The advantage of the metric halfspace median over the 

Fréchet median is clearly more significant on SPD(k) than on Sk and SO(k). Some possible 

reasons for this are that the directionality of the outliers and the transformation invariance 

property of the proposed metric halfspace depth are more relevant on the unbounded SPD(k) 

than on the bounded manifolds.

Overall, results for the different manifolds demonstrate that the proposed metric halfspace 

median is in general a valid robust measure of centrality. Moreover, our proposed depth 

can be generally applied to rank general data objects in a center-outward fashion, as 

demonstrated in the real data applications.

6 Real Data Applications

6.1 Functional Connectivity in Alzheimer’s Disease Patients

The first data application considers symmetric positive definite (SPD) matrices that 

represent brain connectivity, which are widely used as a biomarker of brain function. 

The connectivity between defined regions of interest is calculated as the temporal 

association between their blood-oxygen-level-dependent (BOLD) signals in functional 

magnetic resonance imaging (fMRI) scans when the subjects are in a resting state. We 

analyzed fMRI scans recorded in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

with the goal of making inference regarding brain connectivity in different dementia study 

groups. Our analysis included n = 181 subjects who, according to the severity of cognitive 

decline, were classified at enrollment as: cognitively normal (CN), early mild cognitive 

impaired (EMCI), late mild cognitive impaired (LMCI), or Alzheimer’s disease (AD) 

patients. The fMRI data were preprocessed by following a standard protocol to remove 

motion and timing artifacts, scaling effects, and trends, and we considered only the fMRI 

scans at the participants’ first visits. Problematic scans are not uncommon in fMRI studies as 

a result of imaging artifacts that come from head motion and cognitive state (Laumann et al., 

2017). Statistical depth approaches are appealing for analyzing imaging data since they are 

fully nonparametric and robust to outliers. Here we compare the proposed metric halfspace 

depth with the geodesic distance depth (Chau et al., 2019).

For each subject, the average bold signals in each of the 10 defined brain regions (Buckner’s 

hubs) in a subject’s brain were first calculated, obtaining a 10-dimensional times series 

(Buckner et al., 2009). Next, brain connectivity is represented by the covariance (at lag 0) 
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of the average bold signals, obtaining 10 × 10 covariance matrices as the data observations 

Xi. The left panel of Figure 3 illustrates the connectivity covariance matrices of four random 

subjects in the cognitively normal group. We analyzed the covariance matrices in ℳ = 

SPD(10) with the affine invariant metric. The deepest covariance matrix in the cognitively 

normal group with respect to metric halfspace depth (upper right panel of Figure 3) exhibits 

non-zero cross-covariances between different brain regions, resembling the original sample 

matrices; in contrast, the deepest image w.r.t. the geodesic distance depth (Chau et al., 2019) 

(lower right panel) has near 0 cross-covariances, which is not commonly observed in the 

sample.

We next investigated whether group differences exist among the four groups of patients 

studied. We applied the depth-based Kruskal–Wallis test proposed by Chenouri and Small 

(2012) based on both the proposed metric halfspace depth and the geodesic distance depth 

(Chau et al., 2019). The Kruskal–Wallis test is designed to be sensitive to both location and 

scale changes by calculating the depth of the observations with respect to each group and 

aggregating the depth ranks. Using the permutation null distribution, a p-value of 0.0194 

was produced using the proposed metric halfspace depth, and a p-value of 0.0652 for the 

geodesic distance depth. Further, pairwise comparisons of the dementia groups using the 

depth-based Wilcoxon test (Chenouri and Small, 2012) revealed that the most significant 

difference exists between the Alzheimer’s disease and the cognitively normal groups as 

shown in Table 3. This demonstrates the potential utility of fMRI-based connectivity 

measures and depth-based methods for studying Alzheimer’s disease.

6.2 Phylogenetic Tree Application

In evolutionary biology, the ancestral relationship among a fixed collection of species is 

represented by a tree structure. Each leaf corresponds to a species, each interior node a 

speciation event, an edge the transition from an ancestor to a descendant, and the edge length 

the evolutionary divergence along the edge. A phylogenetic tree is constructed by comparing 

genetic materials from different species and determining the divergence time from the 

mismatches between nucleic acid sequences. Frequently, a collection of phylogenetic trees 

are considered, where each individual tree is constructed from the sequence of a specific 

gene present in the species in question. Collectively, this forms a sample of gene trees 

where the sources of randomness come from biological variation, sequence misalignment, 

and random subsampling in the individual genes.

It has been of great interest to construct a consensus tree that summarizes the individual 

trees to infer the evolutionary history. In addition to the complex structure of the trees, this 

task is complicated by the stark heterogeneity in the individual trees due to analytic artifacts 

such as sequence misalignment, remarkable biological variation, or low signal-to-noise ratio 

in the random subsample. Recently, tree space geometry-aware methods such as the Fréchet 

mean tree (e.g. Nye et al., 2017) have been proposed. These methods have been shown 

to produce reliable inference of tree topology and edge lengths. However, a preliminary 

outlier removal step (e.g., Weyenberg et al., 2014) is usually performed since the Fréchet 

mean is a non-robust measure of location. Here, we apply the metric halfspace depth to 

obtain a “summary tree” that best represents the data and to identify potential outliers. We 
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infer the phylogeny of 7 pathogenic Apicomplexan species relative to an outgroup species 

using n = 268 individual gene trees constructed by Kuo et al. (2008). The Apicomplexa 

phylum contains many important pathogenic parasites that are detrimental to humans and 

livestock. The Apicomplexan species included the infamous malaria pathogens Plasmodium 
falciparum (Pf) and Plasmodium vivax (Pv); tick-borne haemopathogens Babesia bovis (Bb) 

and Theileria annulata (Ta); and coccidian parasites Eimeria tenella (Et), Toxoplasma gondii 
(Tg), and Cryptosporidium parvum (Cp) which infect intestines. The outgroup Tetrahymena 
thermophila (Tt) is a remotely related model species included to root the phylogeny. We 

model the gene trees as rooted trees with the root placed as the point where the outgroup 

joins with the apicomplexan species.

To model the evolutionary divergence between all species and their ancestors, we consider 

T8 × ℝ8 with the product metric, where the BHV space T8 models the tree topology and 

the interior edge lengths, and ℝ8 models the pendant edge lengths. The proposed metric 

halfspace depths were calculated at each of the individual trees, with 10 additional jiggled 

trees added as anchors per original tree for improving approximation. In the deepest tree 

as displayed in Figure 4, tick parasites B. bovis and T. annulata and malaria parasites P. 
falciparum and P. vivax are respectively monophyletic, i.e., sharing the same immediate 

ancestor; these haemoparasites descend from a common ancestor; coccidian species E. 
tenella and T. gondii form a sister group to the former; C. parvum is the deepest rooting 

species. The deepest tree we produced is congruent to the consensus tree identified by 

Kuo et al. (2008) constructed through maximum likelihood, maximum parsimony, and 

neighbor-joining methods, and also agree with the Fréchet mean tree found by Nye et al. 

(2017), who performed the analysis after removing 16 outliers. Our depth-based approach 

has the advantage of being robust to extreme values and does not require separate outlier 

identification and removal.

We also identified 27 gene trees with the least metric halfspace depth, indicating that they 

correspond to the most extreme trees. Among these trees four potential outliers are displayed 

in Figure 5 and the rest are included in Figure S11. Trees 488 and 546 have exceptionally 

long branches, and, in addition, the Plasmodium species in tree 488 (Pf and Pv, hard to 

distinguish in the figure due to the long branch) and tick parasites B. bovis and T. annulata in 

trees 625 and 703 are not monophyletic. These structures, which differ from what has been 

reported in the literature (Kuo et al., 2008), demonstrate the utility of the metric halfspace 

depth for highlighting outliers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Left: Relationship between different complete and connected metric spaces, with a few 

commonly investigated metric spaces shown in dots. Upper right: The two-dimensional unit 

sphere S2 is a Riemannian manifold that is smooth at all points. The distance between two 

points (solid dots) is given by the length of the segment of a great circle connecting them. 

Lower right: The space of 3-spider consisting of three Euclidean positive axes issuing from 

the origin. This is a geodesic space but not a Riemannian manifold due to the singularity at 

the origin. A geodesic connecting two points on different branches is highlighted, and the 

distance between points is the length of the geodesic.
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Fig. 2. 
Illustration of the proposed metric halfspace depth of 100 data points generated on different 

manifolds. Upper left panel, data followed wrapped normal distribution on the sphere 

ℳ = S2. Upper right panel, data followed a normal distribution centered at a tree that has 

leaf B branched out first (on the axis pointing to eight o’clock). Each dot represents a tree 

and five trees are drawn for illustration. Each axis corresponds to a different tree topology 

and the location on the axis corresponds to the length of the interior edge (bolded). The 

origin corresponds to the star tree which trifurcates at the root node and has a degenerate 

interior edge. Lower panel, 2 × 2 symmetric positive definite matrices (x y; y z) were 

generated from a log-normal distribution.
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Fig. 3. 
Left: Connectivity covariance matrices for four cognitively normal individuals. Right: 

Deepest matrices among cognitively normal individuals in terms of metric halfspace depth 

(MHD, upper panel) and geodesic distance depth (GDD, lower panel). Brain regions used 

for creating the connectivity matrices are indicated.
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Fig. 4. 
The deepest tree with respect to the proposed metric halfspace depth. The tree topology 

coincides with the known topology for the apicomplexan species tree.
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Fig. 5. 
Four individual gene trees with the least metric halfspace depth.

Dai et al. Page 28

J Am Stat Assoc. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dai et al. Page 29

Table 1

Median distances over the replicates between the estimated center and the actual center of ℙ1 for data being 

symmetric positive definite matrices on ℳ = SPD(k). The dimensions of the manifold for parameters k = 2, 3, 

and 4 are 3, 6, and 10, respectively. The standard errors of the reported median distances for n = 50,100, and 

200 were less than 0.003, 0.002, and 0.002, respectively. MHD, the proposed metric halfspace depth median; 

FM, Fréchet mean; FMd, Fréchet median.

k = 2 k = 3 k = 4

n = MHD FM FMd MHD FM FMd MHD FM FMd

Case 1 50 .117 .103 .122 .116 .103 .121 .114 .103 .121

100 .075 .071 .081 .076 .071 .080 .078 .071 .080

200 .053 .049 .054 .053 .048 .054 .055 .048 .054

Case 2 50 .124 .140 .136 .114 .140 .124 .119 .145 .126

100 .091 .120 .101 .084 .121 .097 .083 .121 .094

200 .070 .108 .084 .064 .110 .079 .059 .110 .077

Case 3 50 .104 .107 .108 .102 .108 .104 .103 .105 .105

100 .072 .075 .074 .064 .075 .071 .063 .075 .071

200 .051 .054 .051 .042 .053 .050 .040 .054 .050

Case 4 50 .123 .142 .133 .122 .145 .124 .120 .144 .125

100 .087 .124 .102 .084 .124 .094 .083 .125 .091

200 .065 .110 .086 .061 .112 .078 .062 .113 .077
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Table 3

The p-values based on the metric halfspace depth-based Wilcoxon rank test for the pairwise comparisons 

between the four dementia groups. CN, cognitively normal; EMCI, Early Mild Cognitive Impairment; LMCI, 

Late Mild Cognitive Impairment; AD, Alzheimer’s disease.

EMCI LMCI AD

CN 0.644 0.339 0.021

EMCI – 0.350 0.126

LMCI – – 0.074
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